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The authors describe theoretical and experimental studies of  resonance oscillations of  a gas in a tube, 

with one end shut and a periodically vibrating piston mounted on the other. Analytical expressions to 

calculate the amplitude ~f pressure fluctuations in a real gas and experirnental results at the fi'equenc\v 

o f  linear resonance are obtained. Theol .  shows good agreement with experiment. An experimental 

study is made o f  nonlinear resonances of  the second aim third orders and the transition from almost 
harmonic oscillations of the gas to highly nonlinear ones. 

Resonance oscillations excited by harmonic motions of  a piston in a tube with one end shut have been 
the subject of  a number of  investigations [1-10]. The most complete survey of the works is provided in [1]. As 
is known, in the vicinity of  resonances a region of frequencies exists where periodic shock waves are tormed. 
Resonance freqiencies are determined by the expression 

O~nm = n~'2/m (n = I , m = !, 2, 3),  (1) 

where (1)11 = ~ = • co / t .  At m = 1 we have natural frequencies of a gas column that determine the linear 
resonance, m = 2 corresponds to the second subharmonic resonance, and nz = 3 to the third-order resonance 
(the third subharmonic resonance), respectively. 

Resonance near the fundamental frequency is studied in most detail. Thus, in [2] a theory was sug- 
gested for the first time that describes well the form of a shock wave within the framework of the ideal-liquid 
model; a solution is obtained in the form of a function with zero mean value and a discontinuity characterizing 
the front of  the shock wave. However, considerable discrepancy with experiment calls tbr taking account of  
losses. An analysis of  the influence of losses on oscillations carried out in [3-5] is incomplete. 

The second nonlinear resonance was investigated in [6-8], where oscillations were generated by a crank 
mechanism, and therefore the frequency spectrum of piston oscillations contained oscillations of doubled fre- 
quency. A theory of the second subharmonic resonance is suggested in [9]. 

The existence of  the third nonlinear resonance was predicted in [10]. The third-order resonance has not 
been found experimentally. 

All the mentioned works pertain to the case where the amplitude of the piston vibrations was sufficient 

for observation of shock waves. In the region of transition such studies were not conducted. 
We seek to study the linear, second, and third nonlinear resonances, to obtain an analytical expression 

for calculating the amplitude of pressure fluctuations in a real liquid without employing experimental data in 

the region of linear resonance, to compare the obtained theoretical relations with experiment, and to carry out 
an experimental study of  linear and nonlinear resonances in the region of transition to shock waves. 
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Consider  the Chester equation [2] 

{ }2 213 i ~-~/2 c . 21- 1/2 
- - -  E f (t  - ~ )  d ~  C - - ~ s l n m t =  f(t) rt ~:+1 

o 

(2) 

where 

4/ rtco tg (coL~co) 
E = - -  " r - -  

(~: + 1) L cos mL/c o (K:+ I )mL~ 1/2 
(3) 

13 R 
Neglecting the influence of  viscosity and heat  conduction (13 = 0) and transtbrming the left-hand side of  (2) 
with the substitution by 2x = ~ot + rC2, we arrive at 

t f ( t )-~E'/2)-=c(b2+cos2z) ,  (4, 

where b is a new constant to be determined. According to [2]• b is determined from the obvious condition of  

equality to zero of  the average of  the function f(t) over a period. As a result• we have 

l /2 f2rn  " "T} 
f = c  ] + c o s  . (5) 

The sign in front of  cos "~ changes each t ime that sin "~ = r [ ! 1]. We designate h(t) = f ( t -  L/co) and differen- 

tiate (2) with respect to t: 

1~ cos o .  = (~ + ~ ) Lh" {h - (2 , . /~)  ,J2} _ 13L f h" ( , -  ~ ~ - ' ~  . 
0 

(6) 

The pressure on the piston is 

,) 

p (t) = 2% P0h ( t) .  (7) 

We multiply (6) by (--9co/2n) and integrate with respect to t over  an oscillation period: 

tsh+2rt/CO t ~a+2rt/03 

(o 2 f CO 2 f ---PoCo0~l j h(t) cos6otdt=---PoCoOC+l)L j 
K 

lsh /sh 

hh" It l ---~2r El/2"~) dt + 

/sh+2/r./o 

~o 2 f J" h' (r ~-1/2 +--P0Co13L 3 tl(t) - ~ )  d~• 

tsh 0 

(8) 

where tsh is the moment  of  the shock. It is easy  to see that the term on the left is the work of the piston over  
the vibration period/~p• the first term on the right indicates the nonlinear losses ~?~h and the second term is the 

wall losses /~w over  the vibration period [ 11]. 
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Fig. i. Schematic  of  the experimental  setup. 

We consider how the viscosity influences the wave torm, i.e., we will s imultaneously consider the in- 
fluence on the amplitude and the phase. Al lowance  for the integral in the right-hand side of  (2) entails a 
change in (5). We can write [11] 

f,('C)=e.'/2{-~++_cos('C-'¢o)}. (9) 

Thus, the phase of occurrence of  shocks will be displaced by xo (z~ = A +-q~). If  we introduce the 
so-called friction parameter [11] 

213 t-~]1/2 (10) 
~ + 1  

which is the ratio of  the boundary-layer thickness to the tube radius divided by the square root of the Mach 

number of  the piston, then for s << 1 and A0 = 0 we can obtain 

8S . 7I 
3:° = 3--~ sin ~-. (11)  

We introduce "~* = x -  %, and for exact resonance (&~ = 0) we have 

h = h 0 cos '~*, cos rot = - sin (2"c + 2"%). 

Then the equations tor the work of  the piston /~p and the wall losses Ew acquire the form 

3 * a* 1 ¢ + 1 (  cos5~:o~ 
G o=9ocoho aE, - 2 ~ c o s 3 % + ~ f l '  (12) 

3 2 Ew = Pocoho h" (13) 
The nonlinear losses can be written as 

2 3 3 
/~h = 3  P~f0 ( ~ +  1) h~, (14) 
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Fig. 2. Time variation of  oscillograms of  resonance oscillations with in- 

crease in the piston displacement amplitude: a) in the linear resonance 
(,011; b) near the nonlinear resonance c012; c) near the nonlinear resonance 

(.013. 

where /q = kho, k is an as yet unknown constant that will be sought by an iteration method. For this, It0 = 

~/-" should be substituted into (12) and (13), h I = klE ~/2 into (14). As a result, we have 

k I=  cos 31;o+-3cos5x o - I + ~ ) H ( K : + I ) ~  " 

In the next step, we assume that h0 = kle K, /q = k2 ~'d and obtain the tollowing expression for k2: 

3 / .o 5, k 3. I */ = -  cos 3"I: 0+  " - 1 +  
" 4 3 ) 1 S  H 

The process converges well for s < 0.4. 

1 
t/2 k~. (16) 

0¢+  I ) s  

The experiment was conducted on the setup shown schematically in Fig. 1. Longitudinal oscillations of  
the gas column in closed tube 1 were generated by plane piston 2 connected by means o f  rod 3 to working 

table 4 of  vibrator 5 o f  an electrodynamic bench, model VEDS-400. The use o f  the bench allowed a smooth 

variation in the frequency and amplitude o f  gas excitation. Glass tube l was hermetically connected to metallic 

cylinder 7, in which piston 2 vibrated. The cylinder was rigidly fastened via slab 7 to the body of  bench 5. 

The other end of  the glass tube was connected to metallic cylindrical head 8 for mount ing  piezoelectric pres- 
sure gauge 9. The entire length of  the closed tube consisting of three parts was L = 870.5 mm. Its inside 

diameter was 39.3 mm. The pressure was measured by piezogauge 9, whose readings were recorded by an 

$1-54 oscillograph. The gas pressure measurement system was used previously in experiments [8, 12, 13]. The 

frequency and amplitude of  the piston vibrations were regulated and measured by the control system of  the 

bench. The excitation frequency o~/2rt was varied from 60 to 210 Hz and monitored additionally by a Ch3-24 

frequency meter. 
Figure 2 shows oscillograms of  resonance oscillations of  the gas in relation to time with increase in the 

amplitude of  piston displacement 1 = IO41/L in the linear resonance 0)1] (Fig. 2a) and near the nonlinear reso- 

nances e012 (Fig. 2b) and coj3 (Fig. 2c). 
We consider the results per ta iningto  the linear resonance near the first natural frequency o311/2rt = 

195.9 Hz. At a small excitation amplitude (l = 3.67) the gas oscillates almost by a harmonic  law and the pres- 
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Fig. 3. Changes in oscillograms of  gas pressure fluctuations in passing, 

with respect to the frequency, through the nonlinear resonance co-o)13 for 
/ =  21.6. 
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Fig. 4. Dimensionless pressure amplitude 8 p / p o  versus relative amplitude 

of  piston displacement /. 

sure wave has a symmetric and continuous tbrm. A further increase in the excitation amplitude leads to defor- 

mation of  the wave form; bends in the rarefaction and compressi_on zones appear ( / =  5.51). The leading front 
o f  the wave between these zones becomes steep (/ = 13.32). At / = 22.28 a strongly nonlinear wave close to a 

discontinuous one develops. As has been noted earlier [3, 41, at a small excitation amplitude, wall and volu- 
metric losses dominate. With increase in amplitude, nonlinear effects become more pronounced,  and the contri- 

bution of  nonlinear losses increases. At large excitation amplitudes losses due to gas compress ion in nonlinear 

waves are the main reason for distortion of  the amplitude and phase of  the oscillations. 

We consider the oscillograms of  pressure oscillations in the region of  nonlinear resonances 0)~0)12 and 

co ~ 0)L3 (Fig. 2b, c). It is seen that at a small excitation amplitude the gas oscillates almost by a harmonic law. 

With increase in excitation amplitude, the nonlinear behavior o f  the gas column is enhanced. Over  a vibration 
period of  the piston at co = 0)12 two nonlinear waves appear, while at co = 6o13 three waves are observed. In the 

first case, the wave is reflected twice from the shut end of  the tube and the fundamental wave is followed by 

an intermediate wave (reflected from the piston) with a small pressure drop. In the second case, reflection 

occurs three times and we have the fundamental and two intermediate waves. Therefore for  nonlinear reso- 

nances wave formation is less pronounced as compared to the linear resonance. In the latter case (co = toll), 

the wave is reflected once from the shut end of  the tube and therefore only the fundamental  wave is observed 

(Fig. 2a). The maximum values of  A,~ at the resonance frequencies con2/rt = 97.9 Hz and col3/rt = 65.3 Hz 

were equal, respectively, to 0.52 and 0.299 (Ap = (,o2-pl). lO2/po, Po is the atmospheric pressure, P2 and Pl are 
the maximum and minimum pressures in a piston stroke). 

Figure 3 provides oscillograms of  the gas_pressure fluctuations in passing, with respect to the fre- 

quency, through the nonlinear resonance co-col3 at 1 = 21.6. In the preresonance mode (at 0)/0)13 = 0.95), the 

gas oscillations have a form close to harmonic. When the resonance is approached (at 60/0)13 = 0.97), we can 

observe sharp bends and one intermediate wave. Next (at co/col3 = 0.98), two intermediate waves are observed. 
In resonance (at 0)/0)13 = 1.00), the amplitudes of  the fundamental and intermediate waves increase to their 
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maxima. After resonance, the wave amplitudes decrease (¢o/co13 = 1.03) and the gas oscillations acquire a form 
close to harmonic (tO/tOl3 = 1.07). 

In Fig. 4, the solid line shows the dimensionless pressure amplitude ~P/Po as a function of the relative 
amplitude of piston displacement 7 calculated by the suggested theory for the parameters of  the setup [3]. Here, 

2~:~ 2. The the dashed line corresponds to calculation by the Chester theory (a nonviscous liquid) ~P/Po = ~/ 
points depict results of 13, 14, 15], the crosses indicate results of the present experiment. 

A comparison of the experiment with the theory of the second subharmonic resonance 19] when a per- 
turbation initiated by the influence of the crank mechanism is disregarded has shown good agreement. A com- 
parison of the experimentally obtained dimensionless amplitude of pressure fluctuations of the third-order 
resonance has not been carried out because of the absence of theory. 

The experiments performed confirm that an increase in the excitation amplitude near linear and non- 
linear resonances leads to the development of nonlinear effects and distortion of the form of the gas oscilla- 
tions in a closed tube. Special features of formation of nonlinear pressure waves near a frequency threefold 
lower than the first natural frequency of the gas column have been revealed and investigated. 

The work was carried out with support from the "Integration" Federal targeted program, project No. 
244. 

N O T A T I O N  

tOll, fundamental frequency of the gas column; Co, velocity of sound in the undisturbed gas; L, tube 
length; tO, cyclic oscillation frequency; t, time; ~¢ = Cp/C,.; I, amplitude of piston displacement; l = 1041/L, 
dimensionless amplitude of piston displacement; C, integration constant; R, tube radius; v, kinematic-viscosity 
coefficient; p(t), pressure on the piston; t~j~, moment of shock in the shock wave; /?p, work of the piston over 
a period of the oscillations; E~h, nonlinear losses; /~w, wall losses; s, friction parameter; A = arccos r: r, dimen- 
sionless frequency; 8p/po, dimensionless pressure amplitude; A~, dimensionless pressure swing; Pr, Prandtl 
number; H = R'(~/~-, frequency parameter; ~, independent integration constant. Subscripts: sh, shock; w, wall; 
p, piston; 0, average quantities over a period. 

REFERENCES 

I. M.A.  Ilgamov, R. G. Zaripov, R. G. Galiullin, and V. B. Repin, Appl. Mech. Rev., 49, No. 3, 137-154 
(1996). 

2. W. Chester, J. Fluid Mech., 18, No. 1, 44-64 (1964). 
3. S. Temkin, Phys. Fluids, 11, No. 5, 960-963 (1968). 
4. A.M.  Gulyaev and V. M. Kuznetsov, Inzh. Zh., 3, No. 2, 236-245 (1963). 
5. R.G.  Galiullin, E. R. Galiullina, and E. I. Permyakov, lnzh.-Fiz. Zh., 68, No. 3, 408-415 (1995). 
6. Sh. U. Galiev, M. A. Ilgamov, and G. V. Sadykov, lzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 

57-66 (1970). 
7. P. Merkli and H. Thomann, J. Fluid Mech., 68, No. 3, 567-576 (1975). 
8. R .G.  Zaripov and M. A. II'gamov, J. Sound Vibr., 46, No. 2, 245-257 (1976). 
9. J. Keller, ZAMP, 26, No. 4, 395-405 (1975). 

10. J. Keller, ZAMP, 27, No. 3, 303-323 (1976). 
11. J. Keller, J. Fluid Mech., 27, No. 2, 279-304 (1976). 
12. R.G.  Zaripov, Akust. Zh., 23, No. 3, 378-383 (1977). 
13. R . G .  Zaripov, M. A. Ilgamov, Yu. N. Novikov, and V. B. Repin, in: Proc. of the All-Union Conf. 

"Nonlinear Phemonema" [in Russian], Moscow (1991), pp. 47-53. 
14. K.D.  Lehmann, Ann. Phys., 21, No. 1, 101-109 (1934). 
15. D.B.  Cruikshank, JASA, 52, No. 3, 1024-1034 (1972). 

367 


